Abstract

Myosin phosphatase (MLCP) plays a critical regulatory role in the Ca(2+) sensitivity of myosin phosphorylation and smooth muscle contraction. It has been suggested that phosphorylation at Thr(695) of the MLCP regulatory subunit (MYPT1) and at Thr(38) of the MLCP inhibitor protein CPI-17 results in inhibition of MLCP activity. We have previously demonstrated that CPI-17 Thr(38) phosphorylation plays an important role in G-protein-mediated inhibition of MLCP in tonic arterial smooth muscle. Here, we attempted to evaluate the function of MYPT1 in phasic rabbit portal vein (PV) and vas deferens (VD) smooth muscles. Using site- and phospho-specific antibodies, phosphorylation of MYPT1 Thr(695) and CPI-17 Thr(38) was examined along with MYPT1 Thr(850), which is a non-inhibitory Rho-kinase site. We found that both CPI-17 Thr(38) and MYPT1 Thr(850) were phosphorylated in response to agonists or GTPgammaS concurrently with contraction and myosin phosphorylation in alpha-toxin-permeabilized PV tissues. In contrast, phosphorylation of MYPT1 Thr(695) did not increase. Comparable results were also obtained in both permeabilized and intact VD. The Rho-kinase inhibitor Y-27632 and the protein kinase C (PKC) inhibitor GF109203X suppressed phosphorylation of MYPT1 Thr(850) and CPI-17 Thr(38), respectively, in intact VD while MYPT1 Thr(695) phosphorylation was insensitive to both inhibitors. These results indicate that phosphorylation of MYPT1 Thr(695) is independent of stimulation of G-proteins, Rho-kinase or PKC. In the phasic PV, phosphorylation of CPI-17 Thr(38) may contribute towards inhibition of MLCP while the phasic visceral VD, which has a low CPI-17 concentration, probably utilizes other Ca(2+) sensitizing mechanisms for inhibiting MLCP besides phosphorylation of MYPT1 and CPI-17.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.