Abstract
The Hedgehog (Hh) family of secreted proteins is involved both in developmental and tumorigenic processes. Although many members of this important pathway are known, the mechanism of Hh signal transduction is still poorly understood. In this study, we analyse the regulation of the kinesin-like protein Costal2 (Cos2) by Hh. We show that a residue on Cos2, serine 572 (Ser572), is necessary for normal transduction of the Hh signal from the transmembrane protein Smoothened (Smo) to the transcriptional mediator Cubitus interruptus (Ci). This residue is located in the serine/threonine kinase Fused (Fu)-binding domain and is phosphorylated as a consequence of Fu activation. Although Ser572 does not overlap with known Smo- or Ci-binding domains, the expression of a Cos2 variant mimicking constitutive phosphorylation and the use of a specific antibody to phosphorylated Ser572 showed a reduction in the association of phosphorylated Cos2 with Smo and Ci, both in vitro and in vivo. Moreover, Cos2 proteins with an Ala or Asp substitution of Ser572 were impaired in their regulation of Ci activity. We propose that, after activation of Smo, the Fu kinase induces a conformational change in Cos2 that allows the disassembly of the Smo-Fu-Cos2-Ci complex and consequent activation of Hh target genes. This study provides new insight into the mechanistic regulation of the protein complex that mediates Hh signalling and a unique antibody tool for directly monitoring Hh receptor activity in all activated cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.