Abstract

STIM1 (stromal interaction molecule 1) is a key regulator of store-operated calcium entry (SOCE). Upon depletion of Ca(2+) concentration within the endoplasmic reticulum (ER), STIM1 relocalizes at ER-plasma membrane junctions, activating store-operated calcium channels (SOCs). Although the molecular details for STIM1-SOC binding is known, the regulation of SOCE remains largely unknown. A detailed list of phosphorylated residues within the STIM1 sequence has been reported. However, the molecular pathways controlling this phosphorylation and its function are still under study. Using phosphospecific antibodies, we demonstrate that ERK1/2 mediates STIM1 phosphorylation at Ser575, Ser608 and Ser621 during Ca(2+) store depletion, and that Ca(2+) entry and store refilling restore phosphorylation to basal levels. This phosphorylation occurs in parallel to the dissociation from end-binding protein 1 (EB1), a regulator of growing microtubule ends. Although Ser to Ala mutation of residues 575, 608 and 621 showed a constitutive binding to EB1 even after Ca(2+) store depletion, Ser to Glu mutation of these residues (to mimic the phosphorylation profile attained after store depletion) triggered full dissociation from EB1. Given that wild-type STIM1 and STIM1(S575E/S608E/S621E) activate SOCE similarly, a model is proposed to explain how ERK1/2-mediated phosphorylation of STIM1 regulates SOCE. This regulation is based on the phosphorylation of STIM1 to trigger dissociation from EB1 during Ca(2+) store depletion, an event that is fully reversed by Ca(2+) entry and store refilling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call