Abstract

The majority of patients with lung cancer present with metastatic disease. Chronic inflammation and subsequent activation of NF-κB have been associated the development of cancers. The RelA/p65 subunit of NF-κB is typically associated with transcriptional activation. In this report we show that RelA/p65 can function as an active transcriptional repressor through enhanced methylation of the BRMS1 metastasis suppressor gene promoter via direct recruitment of DNMT-1 to chromatin in response to TNF. TNF-mediated phosphorylation of S276 on RelA/p65 is required for RelA/p65-DNMT-1 interactions, chromatin loading of DNMT-1, and subsequent BRMS1 promoter methylation and transcriptional repression. The ability of RelA/65 to function as an active transcriptional repressor is promoter specific as the NF-κB-regulated gene cIAP2 is transcriptionally activated while BRMS1 is repressed under identical conditions. Small molecule inhibition of either of the minimal interacting domains between RelA/p65-DNMT-1 and RelA/p65-BRMS1 promoter abrogates BRMS1 methylation and its transcriptional repression. The ability of RelA/p65 to directly recruit DNMT-1 to chromatin resulting in promoter-specific methylation and transcriptional repression of tumor metastasis suppressor gene BRMS1 highlights a new mechanism through which NF-κB can regulate metastatic disease, and offers a potential target for newer generation epigenetic oncopharmaceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.