Abstract

The intracellular signaling pathways associated with neuronal injury after perforant pathway stimulation of the rodent hippocampus have not been examined. To determine whether activation of the p42/p44 (Erk1/2) MAP kinase (MAPK) phosphorylation cascade is linked to neuronal injury after perforant pathway stimulation (PPS), we stained for phosphorylated Erk1/2 (P-Erk1/2) and for DNA fragmentation, a marker of cell death after PPS. Eighteen Sprague–Dawley rats underwent PPS for 6 ( n=6), 12 ( n=6), or 24 ( n=6) h and were sacrificed either immediately ( n=9) or 48 h ( n=9) after stimulation. Sham-operated non-stimulated control animals ( n=2) and control animals receiving low frequency stimulation only ( n=4) were also examined. Brain sections were stained for DNA fragmentation and P-Erk1/2. DNA fragmentation was evident only in granule cells and CA3 pyramidal cells of the stimulated side 48 h after 24 h of PPS. PPS resulted in robust phosphorylation of Erk1/2 that displayed a stereotyped timecourse, appearing first in hilar neurons on the ipsilateral side and later in hilar neurons, granule cells, hippocampal pyramidal and non-neuronal cell populations on both the stimulated and contralateral sides. Both Erk1/2 phosphorylation and DNA fragmentation show definite and reproducible staining patterns after PPS that vary based on duration of stimulation. Populations displaying Erk1/2 activation appeared to differ from those showing DNA fragmentation and neuronal injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call