Abstract

The construction of low-fouling biosensors for assaying biomarkers in complex biological samples remains a challenge, and the key limitation is the lack of effective anti-fouling materials. Inspired by the biomimetic process of protein phosphorylation, we herein designed a new phosphorylated peptide modified with the dihydrogen phosphate (-PO4H2) group, which significantly increased the hydrophilicity and anti-fouling capability of the peptide when compared with natural and normal peptides. Molecular simulation (MS) illustrated that, compared with the -COOH and -NH2 groups, the -PO4H2 group formed the most numbers of hydrogen bonds and stronger hydrogen bonds with water molecules. As a result, the PO4H2-oligopeptide was proved by MS to be able to attract the greatest number of water molecules, so as to form a compact layer of H2O to resist further adsorption of nonspecific biomolecules. The modification of electrodes with the designed PO4H2-oligopeptides, in addition to the adoption of neutral peptide nucleic acids (PNAs) as the sensing probes, ensured the fabrication of anti-fouling electrochemical biosensors capable of detecting nucleic acids in complex saliva. The constructed anti-fouling biosensor was able to detect the nucleic acid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in undiluted saliva, with a wide linear response range (0.01 pM-0.01 μM) and a low limit of detection (LOD) of 3.4 fM (S/N = 3). The phosphorylation of oligopeptides offers an effective strategy to designing ultra-hydrophilic peptides suitable for the construction of promising anti-biofouling biosensors and bioelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.