Abstract
Many nuclear proteins are phosphorylated: they range from enzymes to several structural proteins such as histones, non-histone chromosomal proteins and the nuclear lamins. The pattern of phosphorylation varies through the cell cycle. Although histone H1 is phosphorylated during interphase its phosphorylation increases sharply during mitosis. Histone H3, chromosomal protein HMG 14 and lamins A, B and C all show reversible phosphorylation during mitosis. Several nuclear kinases have been characterized, including one that increases during mitosis and phosphorylates H1 in vitro. Factors have been demonstrated in maturing amphibian oocytes and mitotic mammalian cells that induce chromosome condensation and breakdown of the nuclear membrane. The possibility that they are autocatalytic protein kinases is considered. The location of histone phosphorylation sites within the nucleosome is consistent with a role for phosphorylation in modulating chromatin folding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.