Abstract

Epigenetic mechanisms play important roles in brain development, orchestrating proliferation, differentiation, and morphogenesis. Lysine-Specific Demethylase 1 (LSD1 also known as KDM1A and AOF2) is a histone modifier involved in transcriptional repression, forming a stable core complex with the corepressors corepressor of REST (CoREST) and histone deacetylases (HDAC1/2). Importantly, in the mammalian CNS, neuronal LSD1-8a, an alternative splicing isoform of LSD1 including the mini-exon E8a, sets alongside LSD1 and is capable of enhancing neurite growth and morphogenesis. Here, we describe that the morphogenic properties of neuronal LSD1-8a require switching off repressive activity and this negative modulation is mediated in vivo by phosphorylation of the Thr369b residue coded by exon E8a. Three-dimensional crystal structure analysis using a phospho-mimetic mutant (Thr369bAsp), indicate that phosphorylation affects the residues surrounding the exon E8a-coded amino acids, causing a local conformational change. We suggest that phosphorylation, without affecting demethylase activity, causes in neurons CoREST and HDAC1/2 corepressors detachment from LSD1-8a and impairs neuronal LSD1-8a repressive activity. In neurons, Thr369b phosphorylation is required for morphogenic activity, converting neuronal LSD1-8a in a dominant-negative isoform, challenging LSD1-mediated transcriptional repression on target genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call