Abstract

The paired helical filament, which comprises the major fibrous element of the neurofibrillary lesions of Alzheimer's disease, is composed of hyperphosphorylated microtubule-associated protein tau. Many of the hyperphosphorylated sites in tau are serine/threonine-prolines. Here we show that the stress-activated protein (SAP) kinases SAPK1γ (also called JNK1), SAPK2a (also called p38, RK, CSBPs, Mpk2 and Mxi2), SAPK2b (also called p38β), SAPK3 (also called ERK6 and p38γ) and SAPK4 phosphorylate tau at many serine/threonine-prolines, as assessed by the generation of the epitopes of phosphorylation-dependent anti-tau antibodies. Based on initial rates of phosphorylation, tau was found to be a good substrate for SAPK4 and SAPK3, a reasonable substrate for SAPK2b and a relatively poor substrate for SAPK2a and SAPK1γ. Phosphorylation of tau by SAPK3 and SAPK4 resulted in a marked reduction in its ability to promote microtubule assembly. These findings double the number of candidate protein kinases for the hyperphosphorylation of tau in Alzheimer's disease and other neurodegenerative disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.