Abstract
Heat shock transcription factor 1 (HSF1) monitors the structural integrity of intracellular proteins and its regulation is essential for the health and longevity of eukaryotic organisms. HSF1 also plays a role in the acute inflammatory response in the negative regulation of cytokine gene transcription. Here we show, for the first time, that HSF1 is regulated by the proinflammatory protein kinase MAPKAP kinase 2 (MK2). We have shown that MK2 directly phosphorylates HSF1 and inhibits activity by decreasing its ability to bind the heat shock elements (HSE) found in the promoters of target genes encoding the HSP molecular chaperones and cytokine genes. We show that activation of HSF1 to bind HSE in hsp promoters is inhibited through the phosphorylation of a specific residue, serine 121 by MK2. A potential mechanism for MK2-induced HSF1 inactivation is suggested by the findings that phosphorylation of serine 121 enhances HSF1 binding to HSP90, a major repressor of HSF1. Dephosphorylation of serine 121 in cells exposed to non-steroidal anti-inflammatory drugs leads to HSP90 dissociation from HSF1, which then forms active DNA binding trimers. These experiments indicate a novel mechanism for the regulation of HSF1 by proinflammatory signaling and may permit HSF1 to respond rapidly to extracellular events, permitting optimal physiological regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.