Abstract

Posttranslational modifications of histone tails regulate numerous biological processes including transcription, DNA repair, and apoptosis. Although recent studies suggest that structural alterations in chromatin are critical for triggering the DNA damage response, very little is known about the nature of DNA damage-induced chromatin perturbations. Here we show that the serine 14 residue in the NH2-terminal tail of histone H2B is rapidly phosphorylated at sites of DNA double-strand breaks. At late time points after irradiation, the phosphorylated form of H2B, H2B-Ser14P, accumulates into irradiation-induced foci. H2B-Ser14P foci formation is not associated with the apoptotic phosphorylation of H2B but is strictly dependent on the phosphorylated isoform of H2AX. Our results broaden the spectrum of histone modifications that constitute the DNA damage “histone code” and suggest a model for the underlying chromatin structure within damage-induced foci.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.