Abstract

Several light-absorbing chemicals are known to show phototoxic effects involving many kinds of DNA damage, and are suspected of initiating skin cancer. In this study, we clarified that phosphorylated histone H2AX (γ-H2AX) (phosphorylated histone H2AX), which was produced with the induction of DNA double-strand breaks, is a sensitive photogenotoxic marker. The immortal human keratinocyte line HaCaT was treated with a library of 11 chemicals (including known strong and weak phototoxic chemicals, and nonphototoxic chemicals) and/or UVA exposure. γ-H2AX was generated after treatments with all phototoxic chemicals and UVA. The limit of detection using γ-H2AX was 100-1,000 times lower than that using cell viability and DNA gel electrophoresis. γ-H2AX was not generated following treatments with nonphototoxic chemicals and UVA. These results indicated that γ-H2AX is a powerful tool for detecting chemical photogenotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.