Abstract

Positive transcription elongation factor b (P-TEFb), the complex of Cyclin T1 and CDK9, activates the transcription of many viral and eukaryotic genes at the point of mRNA elongation. The activity of P-TEFb has been implicated in the differentiation of a number of cell types, including skeletal muscle. In order to promote transcription, P-TEFb hyperphosphorylates RNA Pol II, thereby increasing its processivity. Our previous work identified histone H1 as a P-TEFb substrate during HIV-1 and immediate-early transcription. Here, we examine the role of P-TEFb phosphorylation of histone H1 during differentiation, using the myoblast cell line C2C12 as a model for skeletal muscle differentiation. We found that H1 phosphorylation is elevated in differentiating C2C12, and this phosphorylation is sensitive to P-TEFb inhibition. H1 phosphorylation was also necessary for the induction of three muscle marker genes that require P-TEFb for expression. Additionally, ChIP experiments demonstrate that H1 dissociates from muscle differentiation marker genes in C2C12 cells under active P-TEFb conditions. We determine that both P-TEFb activity and H1 phosphorylation are necessary for the full differentiation of C2C12 myoblasts into myotubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.