Abstract

An analysis of the stress-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF2alpha) involved in translation regulation, in the ovarian cells of Spodoptera frugiperda (Sf9) for its role in cell survival and death reveals that it stimulates casapase activation and cell death in the absence of BiP, a chaperone and stress marker of the endoplasmic reticulum (ER). While Phospho-JNK and GADD-153 levels are elevated in non-ER stress-induced eIF2alpha phosphorylation-mediated cell death, ATF4 levels are elevated both in response to ER and non-ER stress-induced eIF2alpha phosphorylation. Infection of Sf9 cells by wt and a mutant Deltapk2 baculovirus that harbor the anti-apoptotic p35 gene induces BiP expression. However, UV-induced eIF2alpha phosphorylation and caspase activation are mitigated more efficiently by wt, but not by Deltapk2 baculovirus that lacks pk2, an inhibitor of eIF2alpha kinase. z-VAD-fmk, a caspase inhibitor reduces the late stages, but not the initial stages of non-ER stress-induced eIF2alpha phosphorylation, thereby suggesting that eIF2alpha phosphorylation is a cause and consequence of caspase activation. The importance of BiP affecting the delicate balance between eIF2alpha phosphorylation-mediated cell survival and death is further supported by the findings that tunicamycin-treated cells expressing BiP resist eIF2alpha phosphorylation-mediated cell death and addition of a purified recombinant mutant phosphomimetic form, but not wt eIF2alpha, stimulates caspase activation in cell extracts devoid of BiP. These findings therefore suggest that eIF2alpha phosphorylation is primarily a stress signal and evokes adaptive or apoptotic responses depending on its cellular location, changes in gene expression, coincident signaling activities, and inter-protein interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call