Abstract

Phosphorylation of deoxycytidine analogs by cellular enzymes is a prerequisite for the activity of these compounds. We have investigated the kinetic parameters for the phosphorylation of 1-beta-D-arabinofuranosylcytosine (araC) and 2', 2'-difluorodeoxycytidine (dFdC) to their diphosphate forms catalyzed by human UMP-CMP kinase. We cloned the cDNA of this enzyme to enable characterization of the recombinant protein, determine its expression in different tissues, and determine the chromosome location of the gene. We showed that the recombinant UMP-CMP kinase phosphorylated CMP, dCMP, and UMP with highest efficiency and dUMP, AMP, and dAMP with lower efficiency. The monophosphates of araC and dFdC were shown to be phosphorylated with similar efficiency as dCMP and CMP. We further showed, in a combined enzymatic assay, that human deoxycytidine kinase and UMP-CMP kinase together phosphorylated araC, dFdC, and 2',3'-dideoxycytidine to their diphosphate forms. Northern blot analysis showed that the UMP-CMP kinase mRNA was ubiquitously present in human tissues as a 3.9-kb transcript with highest levels in pancreas, skeletal muscle, and liver. The human UMP-CMP kinase gene was localized to chromosome 1p34.1-1p33 by radiation hybrid analysis. We further expressed the UMP-CMP kinase as a fusion protein to the green fluorescent protein in Chinese hamster ovary cells, and showed that the fusion protein was located in the cytosol and nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.