Abstract

Claudin proteins belong to a large family of transmembrane proteins essential to the formation and maintenance of tight junctions (TJs). In ovarian cancer, TJ protein claudin-4 is frequently overexpressed and may have roles in survival and invasion, but the molecular mechanisms underlying its regulation are poorly understood. In this report, we show that claudin-4 can be phosphorylated by protein kinase C (PKC) at Thr189 and Ser194 in ovarian cancer cells and overexpression of a claudin-4 mutant protein mimicking the phosphorylated state results in the disruption of the barrier function. Furthermore, upon phorbol ester-mediated PKC activation of OVCA433 cells, TJ strength is decreased and claudin-4 localization is altered. Analyses using PKC inhibitors and siRNA suggest that PKCε, an isoform typically expressed in ovarian cancer cells, may be important in the TPA-mediated claudin-4 phosphorylation and weakening of the TJs. Furthermore, immunofluorescence studies showed that claudin-4 and PKCε are co-localized at the TJs in these cells. The modulation of claudin-4 activity by PKCε may not only provide a mechanism for disrupting TJ function in ovarian cancer, but may also be important in the regulation of TJ function in normal epithelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.