Abstract
Kinetochores are superprotein complexes that orchestrate chromosome segregation via a dynamic interaction with spindle microtubules. A physical connection between CENP-C and the Mis12-Ndc80-Knl1 (KMN) protein network is an important pathway that is used to assemble kinetochores on CENP-A nucleosomes. Multiple outer kinetochore components are phosphorylated by Aurora B kinase to activate the spindle assembly checkpoint (SAC) and to ensure accurate chromosome segregation. However, it is unknown whether Aurora B can phosphorylate inner kinetochore components to facilitate proper mitotic chromosome segregation. Here, we reported the structure of the fission yeast Schizosaccharomyces pombe Mis12-Nnf1 complex and showed that N-terminal residues 26-50 in Cnp3 (the CENP-C homolog of S. pombe) are responsible for interacting with the Mis12 complex. Interestingly, Thr28 of Cnp3 is a substrate of Ark1 (the Aurora B homolog of S. pombe), and phosphorylation impairs the interaction between the Cnp3 and Mis12 complex. The expression of a phosphorylation-mimicking Cnp3 mutant results in defective chromosome segregation due to improper kinetochore assembly. These results establish a previously uncharacterized regulatory mechanism involved in CENP-C-Mis12-facilitated kinetochore attachment error correction to ensure accurate chromosome segregation during mitosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.