Abstract

Telomere clustering is a widespread phenomenon among eukaryotes. However, the molecular mechanisms that regulate formation of telomere clustering in mammalian meiotic prophase I, are still largely unknown. Here, we show that CDK2, especially p39cdk2, as a potential meiosis-specific connector interaction with SUN1 mediates formation of telomere clustering during mouse meiosis. The transition from CDK2 to p-CDK2 also regulates the progression from homologous recombination to desynapsis by interacting with MLH1. In addition, disappearance of CDK2 on the telomeres and of p-CDK2 on recombination sites, were observed in Sun1−/− mice and in pachytene-arrested hybrid sterile mice (pwk×C57BL/6 F1), respectively. These results suggest that transition from CDK2 to p-CDK2 plays a critical role for regulating meiosis progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.