Abstract

CD4 and CD8 molecules have been implicated in the regulation of T cell activation. In the present study, CD4 and CD8 were modified by increased phosphorylation when T cell clones or T cells were either exposed to phorbol-12-myristate- 13-acetate or were triggered via the CD3-T cell receptor complex. Activation of T cells through the CD2 sheep erythrocyte binding protein, using anti-T11(2) and -T11(3) antibodies, also resulted in CD4 and CD8 phosphorylation. These findings suggest that signals derived from two different receptor pathways can converge and result in similar molecular modifications of CD4 and CD8. Furthermore, phorbol myristate acetate treatment or activation via the CD2 pathway induced phosphorylation of the CD4 and CD8 molecules of thymocytes, suggesting that these molecules may be functional in thymus. Together, our findings indicate that CD4 and CD8 phosphorylation is a consequence of T cell triggering, and suggest that CD4 and CD8 phosphorylation may represent a molecular signaling mechanism among the CD3-T cell receptor complex, CD2, CD4, and CD8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.