Abstract

Caldesmon is a widely distributed calmodulin- and actin-binding protein which occurs in different forms depending on the tissue or cell type under examination. On the basis of molecular weight, caldesmon species can be divided into two classes: caldesmon77 (Mr 70,000-80,000) and caldesmon150 (Mr 140,000-150,000). We have examined the phosphorylation of caldesmon77 by protein kinase C (the Ca2+/phospholipid-dependent enzyme) in vitro and in intact platelets. Caldesmon77, purified from bovine liver, could be phosphorylated by purified rat brain protein kinase C to a level of approximately 1.0 mol of phosphate per mol of caldesmon77 monomer. Two-dimensional tryptic peptide mapping and phosphoamino acid analysis reveals that caldesmon77 is phosphorylated at two major sites exclusively on serine residues. Following treatment of platelets with tumor-promoting phorbol ester, caldesmon77 phosphorylation was elevated 4-fold. Tryptic peptide mapping of phosphorylated platelet caldesmon77 demonstrates that phosphorylation is most significantly enhanced on two peptides which had migration patterns identical with those of the two major phosphopeptides of bovine liver caldesmon77 phosphorylated in vitro. The results of this study indicate that protein kinase C can phosphorylate caldesmon77 in vitro and in intact platelets, suggesting a role for protein kinase C in the regulation of caldesmon77 function or localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.