Abstract

Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIalpha (Top3alpha) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage. In BLM-complemented cells, BLM colocalized with promyelocytic leukemia protein (PML) nuclear bodies and Top3alpha. Fibroblasts without BLM showed an increased sensitivity to camptothecin, enhanced formation of Top1-DNA complexes, and delayed histone H2AX phosphorylation (gamma-H2AX). Camptothecin also induced nuclear relocalization of BLM, Top3alpha, and PML protein and replication-dependent phosphorylation of BLM on threonine 99 (T99p-BLM). T99p-BLM was also observed following replication stress induced by hydroxyurea. Ataxia telangiectasia mutated (ATM) protein and AT- and Rad9-related protein kinases, but not DNA-dependent protein kinase, appeared to play a redundant role in phosphorylating BLM. Following camptothecin treatment, T99p-BLM colocalized with gamma-H2AX but not with Top3alpha or PML. Thus, BLM appears to dissociate from Top3alpha and PML following its phosphorylation and facilitates H2AX phosphorylation in response to replication double-strand breaks induced by Top1. A defect in gamma-H2AX signaling in response to unrepaired replication-mediated double-strand breaks might, at least in part, explain the camptothecin-sensitivity of BLM-deficient cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.