Abstract

The Arabidopsis mitogen activated protein kinase kinase kinase (MEKK1) plays an important role in stress signaling. However, little is known about the upstream pathways of MEKK1. This report describes the regulation of MEKK1 activity during cold signaling. Immunoprecipitated MEKK1 from cold-treated Arabidopsis seedlings showed elevated kinase activity towards mitogen activated protein kinase kinase2 (MKK2), one of the candidate MEKK1 substrates. To clarify how MEKK1 becomes active in response to cold stress signaling, MEKK1 phosphorylation was monitored by an enzyme extracted from the seedlings grown under cold stress with or without EGTA. MEKK1 was phosphorylated after cold stress, but EGTA inhibited the phosphorylation. MKK2 was also phosphorylated by the same extract, but only when EGTA was absent. These results suggested that Ca(2+) signaling occurred upstream of the MEKK1-MKK2 pathway. Full-length MEKK1 showed almost no activity but MEKK1 without the N-terminal region (MEKK1 KD) that retained the kinase domain had a strong ability to phosphorylate MKK2, demonstrating the inhibitory role of the N-terminal region of MEKK1. In addition, MEKK1 was phosphorylated by calcium/calmodulin-regulated receptor-like kinase (CRLK1), which suggested that CRLK1 is one of candidates located upstream of MEKK1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call