Abstract
Two types of reversible protein modification reactions have been identified in bacterial chemotaxis, methylation of membrane receptor-transducer proteins at glutamate side chains and phosphorylation of cytoplasmic signal transduction proteins at histidine and aspartate side chains. CheB is a bifunctional enzyme that is involved in both these modification processes. Its C-terminal domain is a methylesterase that catalyzes the hydrolysis of gamma-carboxyl glutamyl methyl esters in the cytoplasmic domain of chemoreceptor proteins. Its N-terminal domain is a phosphatase that catalyzes the hydrolysis of phospho-CheA, the central response regulator of bacterial chemotaxis. Phospho-CheB, produced as an intermediate in the phosphatase reaction, has dramatically increased methylesterase activity. The interplay between the methylesterase and phosphatase activities of CheB may provide a crucial link between adaptation and excitation in stimulus-response coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.