Abstract

The chemical modifications of starch granules have been adopted to improve the characteristics, viz., paste clarity, resistant starch content, thermal stability, and so forth. The modified starch has been applied as a biopolymer in developing various preparations of food, nutraceutical, and pharmaceutical importance. The present work is focused on phosphorylation of alkali extracted mandua starch for improving digestion resistibility. The phosphorylation of mandua starch extracted from grains of Eleusine coracana (family Poaceae) was carried out by sodium tripolyphosphate/sodium trimetaphosphate at alkaline pH. After chemical treatment of mandua starch, the resistant starch (RS) content was increased significantly. The digestibility of chemically modified starch (CMS) was decreased down after treating by the phosphorylation process. The digestibility of CMS and alkali extracted mandua starch (AMS) in simulated intestinal fluid was found to be 32.64 ± 1.98% w/w and 61.12 ± 2.54% w/w, respectively. After chemical modification of mandua starch, a decrement was observed in amylose content, water-binding capacity, and swelling power. In the three-stage decomposition pattern of CMS studied by thermal gravimetric analysis, the significant changes in decomposition behavior also affirmed the impact of cross-linking in the improvement of stability of internal structure and resistibility of starch. In Fourier transform infrared (FTIR), the formation of the P=O bond was observed in CMS at 1250 cm-1. The acute and sub-acute toxicity studies in terms of behavioral, haematological, and enzymological parameters for CMS were not different significantly from AMS and control (p > 0.05). The cellular architecture of the liver and the kidney were found normal after consumption of CMS. The results revealed that significant increment in RS fraction occurred after cross-linking of mandua starch. The prepared starch may be applied in developing various formulations of food and pharmaceutical importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.