Abstract

The presence of internal Mg-ATP produced a number of changes in the K conductance of perfused giant axons of squid. For holding potentials between -40 and -50 mV, steady-state K conductance increased for depolarizations to potentials more positive than approximately -15 mV and decreased for smaller depolarizations. The voltage dependencies of both steady-state activation and inactivation also appears shifted toward more positive potentials. Gating kinetics were affected by internal ATP, with the activation time constant slowed and the characteristic delay in K conductance markedly enhanced. The rate of deactivation also was hastened during perfusion with ATP. Internal ATP affected potassium channel gating currents in similar ways. The voltage dependence of gating charge movement was shifted toward more positive potentials and the time constants of ON and OFF gating current also were slowed and hastened, respectively, in the presence of ATP. These effects of ATP on the K conductance occurred when no exogenous protein kinases were added to the internal solution and persisted even after removing ATP from the internal perfusate. Perfusion with a solution containing exogenous alkaline phosphatase reversed the effects of ATP. These results provide further evidence that the effects of ATP on the K conductance are a consequence of a phosphorylation reaction mediated by a kinase present and active in perfused axons. Phosphorylation appears to alter the K conductance of squid giant axons via a minimum of two mechanisms. First, the voltage dependence of gating parameters are shifted toward positive potentials. Second, there is an increase in the number of functional closed states and/or a decrease in the rates of transition between these states of the K channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.