Abstract

This study aimed to investigate the effect of phosphorylation modification of collagen peptide on its calcium-binding capacity and pro-mineralization activity. In this study, collagen peptide (Leu-Thr-Phe, LTF) and phosphorylated LTF (P-LTF) were synthesized and further chelated with calcium ions. The results showed that phosphorylation of LTF significantly enhanced its calcium-binding capacity. Spectra analysis revealed that the calcium-binding sites of P-LTF were mainly carbonyl, carboxyl, and phosphate groups. Molecular docking further demonstrated that the phosphate group introduced by phosphorylation enhanced the calcium-binding capacity of LTF by ionic bonds and coordination bonds. The stability analysis results suggested that intestinal fluid could repair the peptide-calcium complex destroyed by gastric fluid. The cell experiment displayed that P-LTF-Ca significantly improved the mineralization activity of MC3T3-E1 cells, and the order of effective influence was P-LTF-Ca > LTF-Ca > P-LTF > LTF. This study provided the theoretical basis for the potential application of phosphorylation modification in improving bone health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.