Abstract
Cytoplasmic carbonic anhydrase (CAc) in the gill of teleost fish contributes to ionic regulation and acid–base balance by catalyzing the reversible reaction of CO2 and water, CO2 + H2O ↔ H(+) + HCO3(-). Regulation of CAc abundance and activity therefore is expected to fine-tune responses to ionic or acid–base challenges. The present study investigated the potential for gill CAc of rainbow trout, Oncorhynchus mykiss (tCAc), to undergo reversible phosphorylation. The activity of tCAc was approximately doubled by phosphorylation achieved through in vitro stimulation of endogenous protein kinases; kinase stimulation doubled phospho-threonine content from that observed in tCAc isolated under conditions where both kinases and protein phosphatases were inhibited. In vitro incubation to preferentially stimulate specific kinases implicated protein kinase G (PKG) in mediating the increase in tCAc activity. The kinetic parameters of turnover number (k cat) and substrate affinity (K m) were similarly affected by stimulation of either kinase or phosphatase action. However, phosphorylation via kinase stimulation significantly increased the efficiency of tCAc (V max /K m), and this factor may have contributed to the elevation of tCAc activity. In addition, phosphorylation of tCAc by kinase stimulation significantly increased the inhibition constant (K i) for acetazolamide. These results demonstrate that tCAc is subject to reversible phosphorylation; future work should focus on identifying the physiological situation(s) in which phosphorylation of trout branchial CAc occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.