Abstract

Biochemical systems and processes in living cells generally operate far from equilibrium. This review presents an overview of a statistical thermodynamic treatment for such systems, with examples from several key components in cellular signal transduction. Open-system nonequilibrium steady-state (NESS) models are introduced. The models account quantitatively for the energetics and thermodynamics in phosphorylation-dephosphorylation switches, GTPase timers, and specificity amplification through kinetic proofreading. The chemical energy derived from ATP and GTP hydrolysis establishes the NESS of a cell and makes the cell--a mesoscopic-biochemical reaction system that consists of a collection of thermally driven fluctuating macromolecules--a genetically programmed chemical machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.