Abstract

Peptidyl-prolyl isomerization is an important post-translational modification of protein because proline is the only amino acid that can stably exist as cis and trans, while other amino acids are in the trans conformation in protein backbones. This makes prolyl isomerization a unique mechanism for cells to control many cellular processes. Isomerization is a rate-limiting process that requires a peptidyl-prolyl cis/trans isomerase (PPIase) to overcome the energy barrier between cis and trans isomeric forms. Pin1, a key PPIase in the cell, recognizes a phosphorylated Ser/Thr-Pro motif to catalyze peptidyl-prolyl isomerization in proteins. The significance of the phosphorylation-dependent Pin1 activity was recently highlighted for isomerization of ATR (ataxia telangiectasia- and Rad3-related). ATR, a PIKK protein kinase, plays a crucial role in DNA damage responses (DDR) by phosphorylating hundreds of proteins. ATR can form cis or trans isomers in the cytoplasm depending on Pin1 which isomerizes cis-ATR to trans-ATR. Trans-ATR functions primarily in the nucleus. The cis-ATR, containing an exposed BH3 domain, is anti-apoptotic at mitochondria by binding to tBid, preventing activation of pro-apoptotic Bax. Given the roles of apoptosis in many human diseases, particularly cancer, we propose that cytoplasmic cis-ATR enables cells to evade apoptosis, thus addicting cancer cells to cis-ATR formation for survival. But in normal DDR, a predominance of trans-ATR in the nucleus coordinates with a minimal level of cytoplasmic cis-ATR to promote DNA repair while preventing cell death; however, cells can die when DNA repair fails. Therefore, a delicate balance/equilibrium of the levels of cis- and trans-ATR is required to ensure the cellular homeostasis. In this review, we make a case that this anti-apoptotic role of cis-ATR supports oncogenesis, while Pin1 that drives the formation of trans-ATR suppresses tumor growth. We offer a potential, novel target that can be specifically targeted in cancer cells, without killing normal cells, to significantly reduce the adverse effects usually seen in cancer treatment. We also raise important issues regarding the roles of phosphorylation-dependent Pin1 isomerization of ATR in diseases and propose areas of future studies that would shed more understanding on this important cellular mechanism.

Highlights

  • Peptidyl-prolyl isomerization is an important post-translational modification of protein because proline is the only amino acid that can stably exist as cis and trans, while other amino acids are in the trans conformation in protein backbones

  • Peptidyl isomerization is the reversible transformation of a molecule between cis and trans isomeric forms, such that the peptide or protein can exist in two distinct geometric conformations, cis and trans (Figure 1)

  • Pin1 is a member in the parvulin family of peptidyl prolyl isomerases (PPIases); it can catalyze proline isomerization only at a phosphorylated Ser/Thr-Pro motif (Lu et al, 1996, 2007; Lu and Zhou, 2007)

Read more

Summary

Frontiers in Cell and Developmental Biology

The alternative scenario where trans-ATR is dominant in the cytoplasm leads to an increase in free t-Bid since trans ATR is unable to bind and sequester t-Bid, allowing the programmed cell death that occurs when the cell is unable to repair DNA damage In support of this mechanism proposed by Hilton et al (2015), Lee et al (2015) observed that a low expression of cytoplasmic pATR (S428; which implies higher levels of cytoplasmic cis-ATR) is associated with an advanced stage epithelial ovarian carcinoma (EOC) with poor disease prognosis and treatment outcomes. Pin inhibits formation of cis-ATR and deprives the cell of cis-ATR’s anti-apoptotic role at the mitochondria, while promoting the formation of trans-ATR in the nucleus where it is important for repair of genotoxic stress to prevent mutations and maintain genome stability.

Level status
Findings
POTENTIAL TARGETING OF ATR ISOMERIZATION IN CANCER THERAPIES
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call