Abstract

A 25-amino acid peptide, containing the four protein kinase C (PKC) phosphorylation sites and the calmodulin (CaM) binding domain of the myristoylated alanine-rich C kinase substrate (MARCKS) protein, has been synthesized and used to determine the effects of phosphorylation on its binding and regulation of CaM. PKC phosphorylation of this peptide (3.0 mol of Pi/mol of peptide) produced a 200-fold decrease in its affinity for CaM. PKC phosphorylation of the peptide resulted in its dissociation from CaM over a time course that paralleled the phosphorylation of 1 mol of serine/mol of peptide. The peptide inhibited CaM's binding to myosin light chain kinase and CaM's stimulation of phosphodiesterase and calcineurin. PKC phosphorylation of the peptide resulted in a rapid release of bound CaM, allowing its subsequent binding to myosin light chain kinase (t1/2 = 1.6 min), stimulation of phosphodiesterase (t1/2 = 1.2 min) and calcineurin (t1/2 = 1.7 min). Partially purified MARCKS protein produced a similar inhibition of CaM-phosphodiesterase which was reversed by PKC phosphorylation. PKC phosphorylation of the peptide occurred primarily at serine 8 and serine 12, and phosphorylation of serine 12 regulated peptide affinity for CaM. Thus, PKC phosphorylation of the peptide and the MARCKS protein results in the rapid release of CaM and the subsequent activation of CaM-dependent enzymes. This process might allow for interplay between PKC and CaM-dependent signal transduction pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.