Abstract

AimsThe deacetylase Sirtuin 6 (SIRT6) is up-regulated during fibrogenesis in renal tubular cells and post-ischemia/reperfusion kidneys. Hence, our aim was to investigate the mechanism of SIRT6 up-regulation upon profibrotic stress. Main methodsImmunohistochemical staining was used to detect the expression of UBC9 in the kidney section. The interaction of GSK-3β and SIRT6, and phosphorylation level of SIRT6 were detected by the immunoprecipitation assay. The wild-type and phosphorylated site mutant plasmids of SIRT6 were constructed and stably transfected to BUMPT cells to evaluate the phosphorylation function of SIRT6 by immunoblotting assay. Key findingsThe phosphorylation of SIRT6 is significantly increased during TGF-β treatment in mouse renal tubular cells. GSK-3β can physically interact with SIRT6 in renal tubular cells, and this interaction is enhanced by TGF-β treatment. Moreover, GSK-3β is the phosphorylation kinase for SIRT6, and phosphorylates SIRT6 at Serine 326 residue to prevent its ubiquitination-mediated proteasomal degradation. Non-phosphorylatable mutant, S326A, of SIRT6, restores β-catenin activation and fibrotic changes in renal tubular cells. SignificanceThe present study demonstrates that a new mechanism for GSK-3β-mediated anti-fibrotic function in renal fibrosis through phosphorylation of SIRT6 to prevent its proteasomal degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call