Abstract

The neuronal nicotinic acetylcholine receptor (nAChR) alpha4 and beta2 subunits expressed in heterologous expression systems assemble into high- and low-affinity receptors (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003), which reflects the assembly of two distinct subunit stoichiometries of alpha4beta2 receptor (Nelson et al., 2003). The high-affinity receptor ([alpha4]2[beta2]3) is about 100-fold more sensitive to ACh than the low-affinity receptor ([alpha4]3[beta2]2) (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003). Recent evidence implicated 14-3-3 proteins as modulators of the relative abundance of nAChR subunits in the endoplasmic reticulum (ER), where ligand-gated ion channels assemble. The 14-3-3 proteins influence ER-to-plasma membrane trafficking of multimeric cell-surface proteins (O'Kelly et al., 2002). 14-3-3 proteins bind components of these multimeric proteins, and this interaction overrides dibasic COP1 retention signal to permit forward transport of the protein (O'Kelly et al., 2002). In the case of alpha4beta2 nAChRs, 14-3-3 binds the alpha4 subunit, and this association is dependent on phosphorylation of a serine residue within a protein kinase A(PKA) consensus sequence in the large cytoplasmic domain of the alpha4 subunit, which is also a binding motif recognized by 14-3-3 (Jeancloss et al., 2001; O'Kelly et al., 2002). The interplay among PKA, alpha4 subunits, and 14-3-3 proteins increases cell-surface expression of alpha4beta2 nAChRs by increasing steady-state levels of the alpha4 subunit available for assembly with beta2 subunits (Jeancloss et al., 2001). Because it is not known how 14-3-3-dependent changes in the steady-state levels of the alpha4 subunit might affect the functional type of alpha4beta2 receptors, we have investigated the effects of mutations of the 14-3-3 binding motif in the alpha4 subunit on alpha4beta2 nAChR function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.