Abstract

Aromatic L-amino acid decarboxylase (AAAD), an enzyme required for the synthesis of catecholamines, indoleamines, and trace amines, is rapidly activated by cyclic AMP-dependent pathways in striatum and midbrain in vivo, suggesting enzyme phosphorylation. We now report that the catalytic subunit of cyclic AMP-dependent protein kinase (PKA) directly phosphorylated AAAD immunoprecipitated from homogenates prepared from the mouse striatum and midbrain in vitro. Under the same phosphorylation conditions, the catalytic subunit of PKA also phosphorylated a recombinant AAAD protein expressed in Escherichia coli transfected with an AAAD cDNA isolated from the bovine adrenal gland. The PKA-induced AAAD phosphorylation of immunoprecipitates from striatum and midbrain was time and concentration dependent and blocked by a specific PKA peptide inhibitor. Incubation of the catalytic subunit of PKA with striatal homogenates increased enzyme activity by approximately 20% in a time- and concentration-dependent manner. Moreover, incubation of the catalytic subunit of PKA with recombinant AAAD increased activity by approximately 70%. A direct phosphorylation of AAAD protein by PKA might underlie the cyclic AMP-induced rapid and transient activation of AAAD in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.