Abstract

Type 2 diabetes mellitus (T2DM) is a risk factor for pulmonary tuberculosis (PTB) and increased mortality. This work focused on the functions of phosphorylated STAT3 in lung injury in mouse with T2DM‐associated PTB and the molecules involved. A mouse model with T2DM‐PTB was induced by administrations of streptozotocin, nicotinamide and mycobacterium tuberculosis (Mtb). A pSTAT3‐specific inhibitor AG‐490 was given into mice and then the lung injury in mice was observed. The molecules involved in AG‐490‐mediated events were screened out. Altered expression of miR‐19b, miR‐1281 and NFAT5 was introduced to identify their involvements and roles in lung injury and PTB severity in the mouse model. Consequently, pSTAT3 expression in mice with T2DM‐associated PTB was increased. Down‐regulation of pSTAT3 by AG‐490 prolonged the lifetime of mice and improved the histopathologic conditions, and inhibited the fibrosis, inflammation, Mtb content and number of apoptotic epithelial cells in mouse lung tissues. pSTAT3 transcriptionally suppressed miR‐19b/1281 expression to up‐regulate NFAT5. Inhibition of miR‐19b/1281 or up‐regulation of NFAT5 blocked the protective roles of AG‐490 in mouse lung tissues. To conclude, this study evidenced that pSTAT3 promotes NFAT5 expression by suppressing miR‐19b/1281 transcription, leading to lung injury aggravation and severity in mice with T2DM‐associated PTB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.