Abstract

Integrin-mediated adhesions are convergence points for multiple signaling pathways. Their inner structure and diverse functions can be studied with super-resolution microscopy. Here, we examined the spatial organization within focal adhesions by analyzing several adhesion proteins with structured illumination microscopy (SIM). Paxillin (Pax) serves as a scaffold protein and signaling hub in focal adhesions, and focal adhesion kinase (FAK, also known as PTK2) regulates the dynamics of adhesions. We found that their phosphorylated forms, pPax and pFAK, form spot-like, spatially defined clusters within adhesions in several cell lines and confirmed these findings with additional super-resolution techniques. These clusters showed a more regular separation from each other compared with more randomly distributed signals for FAK or paxillin. Mutational analysis indicated that the active (open) FAK conformation is a prerequisite for the pattern formation of pFAK. Live-cell super-resolution imaging revealed that organization in clusters is preserved over time for FAK constructs; however, distance between clusters is dynamic for FAK, while paxillin is more stable. Combined, these data introduce spatial clusters of pPax and pFAK as substructures in adhesions and highlight the relevance of paxillin-FAK binding for establishing a regular substructure in focal adhesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.