Abstract

Granulovacuolar degeneration (GVD) was originally reported in Alzheimer’s disease (AD) and later found in aging brains. Pathologically, GVD is thought to be associated with the development of tauopathy, but the precise mechanism remains unknown. Previous studies have suggested that GVD contains proteins associated with an inflammatory signal. In this study, we examined phosphorylated p65 (pp65), which is the activated form of a subunit of nuclear factor-kappa B (NF-κB), in the hippocampus of 21 autopsied cases, including AD, amyotrophic lateral sclerosis cases with optineurin mutation (ALS-OPTN), and a variety of other neurodegenerative disorder cases and normal controls. In all cases, GVDs were immunopositive for pp65. The density of pp65-positive GVDs statistically correlated with that of casein kinase 1 delta (CK1δ), which is known as GVD marker. pp65 was also detected in neurites in AD and ALS-OPTN. The number of neurons with pp65-immunoreactive GVD was significantly higher in the AD group than in the non-AD group. Double immunostaining showed the colocalization of CK1δ and pp65. pp65-positive GVD was found in a neuron with AT8-positive neurofibrillary tangles. Moreover, pp65 was also found in neurites that were immunostained with phosphorylated tau, phosphorylated α-synuclein, or TDP-43 (transactivation response element DNA-binding protein 43 kDa). Therefore, the activation of the NF-κB pathway may be related to the pathology of GVD formation and dementia with tauopathy, including AD and ALS-OPTN. We propose that pp65 is useful as a GVD marker, and that the NF-κB pathway could be a therapeutic target not only for AD, but for age-related neurodegenerative diseases in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call