Abstract

Phosphorous-containing biopolymers have been applied to expedite the regeneration of damaged bone tissue by stimulating the function of phosphorous groups in natural bones. However, the underlying mechanism of phosphorous-containing biopolymers in promoting osteogenic differentiation is unclarified. Herein, we synthesized phosphorylated chitosan hydrogels by incorporating phosphocreatine into chitosan molecular chains under mild conditions. The introduction of phosphate groups improved properties of protein adsorption and calcium deposition without affecting the morphology of hydrogels. Our results showed that phosphorylated chitosan hydrogels could not only promote alkaline phosphatase activity and mineralization but also upregulate the expression of osteogenic-related genes and proteins. Meanwhile, application of c-Jun N-terminal kinase inhibitor SP600125 and p38 mitogen-activated protein kinase inhibitor SB203580 repressed the expression of osteogenic-related markers in gene and protein levels. To the best of our knowledge, it is reported for the first time that phosphorous-containing biopolymers promote osteogenic differentiation of osteoblasts via JNK and p38 signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call