Abstract

The pyridoxal phosphate dependent enzyme D-serine dehydratase has been investigated using 31P nuclear magnetic resonance (NMR) at 72.86 MHz. In the native enzyme, the pyridoxal phosphate 31P chemical shift is pH dependent with pKa = 6.4, indicating exposure of the phosphate group to solvent. Binding of the competitive inhibitor isoserine results in the formation of the isoserine-pyridoxal phosphate complex. This transaldimination complex is fixed to the enzyme via the phosphate group of the cofactor as the dianion, independent of pH. At pH 6.6 the dissociation constant KD for isoserine determined by NMR is 0.43 mM. Reconstitution of the apoenzyme with pyridoxal phosphate monomethyl ester produces an inactive enzyme. NMR and fluorescence measurements show that this enzyme does not form the transaldimination complex, indicating that the fixation of the dianionic phosphate (probably via a salt bridge with an arginine residue) observed in the native enzyme is required for the transaldimination step of the catalytic mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.