Abstract

AbstractVacancy engineering is an effective strategy to manipulate the electronic structure of electrocatalysts to improve their performance, but few reports focus on phosphorus vacancies (Pv). Herein, the creation of Pv in metal phosphides and investigation of their role in alkaline electrocatalytic hydrogen evolution reaction (HER) is presented. The Pv‐modified catalyst requires a minimum onset potential of 0 mV vs. RHE, a small overpotential of 27.7 mV to achieve 10 mA cm−2 geometric current density and a Tafel slope of 30.88 mV dec−1, even outperforms the Pt/C benchmark (32.7 mV@10 mA cm−2 and 30.90 mV dec−1). This catalyst also displays superior stability up to 504 hours without any decay. Experimental analysis and density functional theory calculations suggest Pv can weaken the hybridization of Ni 3d and P 2p orbitals, enrich the electron density of Ni and P atoms nearby Pv, and facilitate H* desorption process, contributing to outstanding HER activity and facile kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.