Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br] production on the acid sandy Sahelian soils in West Africa (WA) is severely limited by low plant-available phosphorus (P) in addition to erratic rainfall. We sought to examine the genetic variability for P uptake and P utilization efficiency in 180 WA pearl millet inbred lines or subsets thereof under low (LP) and high P (HP) conditions in one field and two pot experiments, determine the relationships among the measured traits and grain yield under field conditions at three other independent WA sites, and identify potential secondary selection traits for improving grain yield under LP. We observed genetic variation for P uptake and utilization in both seedling and mature plants. P utilization efficiency increased under LP conditions. Total P uptake was more important for grain production than P utilization under LP field conditions (r=0.57*** vs r=0.30***). The estimated response to indirect selection was positive for most of the measured morphological and P-efficiency parameters. We conclude that both seedling and mature plant traits are potentially useful as secondary traits in selection of pearl millet for low-P adaptation. These results should be validated using heterozygous pearl millet genetic materials. Ultimately, pearl millet breeding activities for low P tolerance in WA should be integrated with other system-oriented research such as nutrient cycling, intercropping or rotations with legumes, better crop-tree-livestock integration, and modest applications of locally available rock phosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.