Abstract

South African Proteaceae are adapted to the low soil phosphorus (P) concentrations of the Cape Floristic Region. The efficient P uptake by Proteaceae means that these plants experience phosphorus (P) toxicity at lower rhizosphere [P] than crop plants. This is only problematic when cultivating Proteaceae (and many plants from this region) on previously agricultural land with high residual soil [P]. In this study we hypothesize that P toxicity will result in element imbalances in leaves of Proteaceae and information from this study aims to facilitate ameliorative treatments. Phosphorus toxicity was induced on-farm in Leucadendron ‘Safari Sunset’ (Proteaceae) with subsequent mapping of element distribution in non-necrotic leaf tissue using micro particle-induced X-ray emission spectrometry. Phosphate supply up to 0.01 mM in a fertigation solution resulted in increased stem length of Leucadendron ‘Safari Sunset’ while P concentrations in excess of this resulted in decreased stem length, increased leaf [P] up to 0.25% (w/w) and, between 1 mM and 5 mM P supply, typical P toxicity symptoms were observed. High P supply (5 mM P) resulted in increased leaf [P] in most leaf tissues including the epidermis, where calculations from an equilibrium speciation model indicated that there was 30% more dissolved PO 4 3− in the epidermis compared to leaves at low P supply (0 mM added P on soil with 34 mg P kg −1). Concomitantly, bundle sheath and epidermal [Ca] were reduced and 10% more Ca was predicted to be adsorbed and precipitated as hydrapatite at high P supply. High P supply resulted in increased leaf [Cl] and [Mn] in all tissues studied; decreased total leaf [Fe], bundle sheath, xylem, phloem and epidermal [Fe] and decreased total leaf [Zn] and xylem and phloem [Zn]. The observed symptoms of P toxicity in Leucadendron ‘Safari Sunset’ (necrosis in some plants, chlorosis and leaf rosetting) co-occurred with (1) excess PO 4 3−, which may bind Ca in the epidermis (leading eventually to necrosis); (2) reduced [Fe] and increased [Mn] (leading to chlorosis) and (3) reduced total and vascular [Zn] (leading to leaf rosetting).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call