Abstract

Most previous studies have limited the assessments of soil phosphorus (P) status within the plow layer. This study was to assess the impacts of crop sequences and nutrient sources on P status of a Labarre silty clay (Humic Cryaquept) profile in a frigid continental climate. Soil of the 0- to 15-, 15- to 30-, 30- to 60-, and 60- to 90-cm layers was sampled from a split-plot experiment comprising a barley (Hordeum vulgare L.) monoculture and a 3-year barley-forage rotation as main plots, and receiving mineral fertilizers (MIN) or liquid dairy manure (LDM) as subplots. A modified Hedley sequential fractionation was used to characterize soil P status. Labile P pools were more affected than stable ones by the investigated treatments. After 10 years, the MIN resulted in larger resin-P and NaHCO3-Pi, and lower NaHCO3-Po and NaOH-Po pools than the LDM in the top 30 cm of soil. The rotation resulted in larger labile Pi and Po pools than the monoculture in the 30- to 60-cm layer. The rotation associated with LDM produced the largest total labile P pool, whereas the LDM resulted in an about 20% higher degree of soil P saturation as expressed by the Pox/(Feox + Alox) molar ratio than the MIN in the 0- to 30-cm layer. Our observations stressed that the impacts of crop sequences and nutrient sources on soil labile P extended deeper into the profile than the disturbance caused by primary tillage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call