Abstract
In order to better understand P cycling and bioavailability in the intertidal system of the Yangtze Estuary, both surface (0–5 cm) and core (30 cm long) sediments were collected and sequentially extracted to analyze the solid-phase reservoirs of sedimentary P: loosely sorbed P; Fe-bound P; authigenic P; detrital P; and organic P. The total sedimentary P in surface and core sediments ranged from 14.58–36.81 μmol g −1 and 17.11–24.55 μmol g −1 , respectively, and was dominated by inorganic P. The average percentage of each fraction of P in surface sediments followed the sequence: detrital P (54.9%) > Fe-bound P (23.7%) > organic P (14.3%) > authigenic P (6.3%) > loosely sorbed P (0.8%), whereas in core sediments it followed the sequence: detrital P (61.7%) > Fe-bound P (17.0%) > authigenic P (13.1%) > organic P (7.5%) > loosely sorbed P (0.7%). Post-depositional reorganization of P was observed in both surface and core sediments, converting organic P and Fe-bound P to authigenic P. The accumulation rates and burial efficiencies of the total P in the intertidal area ranged from 118.70–904.98 μmol cm −2 a −1 and 80.29–88.11%, respectively. High burial efficiency of the total P is likely related to the high percentage of detrital P and the high sediment accumulation rate. In addition, the bioavailable P represented a significant proportion of the sedimentary P pool, which on average accounted for 37.4% and 25.1% of the total P in surface and core sediments, respectively. This result indicates that the tidal sediment is a potential internal source of P for this P-limiting estuarine ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.