Abstract

The degradation of tropical coastal lagoon systems in urban areas of the least developed countries has been associated with an increase in impermeable areas and poor domestic sewage treatment, increasing land-based runoff of nutrients and suspended solids from catchments. This study aimed to assess the biogeochemical changes caused by human interventions through the analysis of the spatial distribution of sedimentary phosphorus (P) and its mass balance in the Itaipu lagoon, located on the east coast of the state of Rio de Janeiro. Human intervention in the Itaipu lagoon system has caused severe imbalances in biogeochemical cycles over the past decades. Watercourses have been channeled to normalize the hydrological regime and increase hydraulic energy, improving sediment transport capacity. In this context, the increase in runoff from the coastal urban basin into the Itaipu lagoon has buried an increasing amount of phosphorus in the sediment. Recently, a regional increase in storm events caused a series of landslides and floods, which have been reported as possible consequences of global climate change. In recent decades, the synergy between landslides and river channeling has increased TP loads, accelerating phosphorus settling and changing P spatial distribution in surface sediments. This has accelerated siltation of the lagoon with an accumulation of nutrients and organic matter, leading in some cases to sediment anoxia. The lagoon has undergone strong eutrophication, changing its trophic state from meso- to hypertrophic in less than 30 years, even though P loads are not as high as in other coastal lagoons. Our findings confirm that human intervention impacts nutrient loads, which in turn disrupt the balance of biogeochemical cycles, compromising coastal water resources. This leads to the collapse of ecosystem services, another step towards degrading planetary boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.