Abstract

Phosphorus (P) loss from agricultural land is a persistent environmental challenge, and a better understanding of the impact of continuous cover crops (CCs) growth on soil P sorption and desorption characteristics is needed to inform mitigation strategies. This study investigated the impact of CC species on soil P pools, sorption characteristics, and dissolved reactive P (DRP) after 9 yr. Soil samples were collected at 0-to-2- and 2-to-4-cm soil depths from a silty clay loam Mollisol. Treatments included cereal rye (Secale cereal L.; CR), annual ryegrass (Lolium multiflorum, AR), oats/radish (Avena sativa L./Raphanus sativus L.; OR), and no CC (CN). A sorption experiment was done with varying P concentrations for 24h equilibration, and sorption parameters were estimated using the Langmuir model. The DRP was estimated using sequential soil extraction by 0.01M CaCl2 for 5h. Long-term CC significantly decreased P sorption maximum but increased binding energy relative to CN. Annual ryegrass significantly decreased soil water extractable P, Mehlich 3 P, and degree of P saturation relative to OR and CN at the 0-to-2-cm depth. Annual ryegrass and CR significantly decreased desorbed DRP by an average of 42 and 45% relative to CN and OR, respectively, at the 0-to-2-cm depth. These results demonstrated that long-term grass species decreased the concentrations of labile P pools and desorbed DRP at the soil runoff interaction zone. Therefore, planting of AR and CR should be promoted in fields susceptible to runoff DRP losses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.