Abstract

Draining of geographically isolated (no defined inlet or outlet) freshwater mineral soil wetlands has likely converted areas that acted historically as important P sinks to sources of P. To explore the role of wetland drainage on nonpoint-source P pollution, differences in the chemical characteristics and P sorption parameters of drained and intact wetlands were investigated in a small watershed situated in the Prairie Pothole Region of southwestern Manitoba, Canada. Chemical characteristics and P sorption parameters varied across landscape positions, particularly for landscape positions that were submerged. Intact wetlands had slightly higher concentrations of organic and total P relative to drained wetlands, which is indicative of their P trapping capacity. More importantly, the maximum P sorption capacity and P buffering capacity of intact wetlands were 3.6 (1752 vs. 492 mg kg) and 17 (1394 vs. 84 L kg) times greater than those in drained wetlands. Conversely, equilibrium P concentrations and bioavailable P concentrations in drained wetlands were an order of magnitude greater than those in intact prairie wetlands. Our study suggests that intact prairie wetlands may be effective sinks for P. As a result, prairie wetlands may play an important role in mitigating nonpoint-source pollution. Conversely, our findings suggest that drained prairie wetlands are potentially a high risk for P export and should be treated as important critical source areas within prairie watersheds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.