Abstract

Phosphorus removal from wastewater is very important in order to prevent water eutrophication. Although there are many ways to remove phosphorus, electrocoagulation (EC) is a promising method. However, the efficiency of conventional EC processes needs to be further improved. In this study, magnetized iron particle anodes used for EC were fabricated and batch experiments were conducted. The results showed that magnetized anode configuration (iron powder, iron filings, iron sheet), current density (i), as well as electrolysis time had significant effects on phosphorus removal. Particle electrodes (e.g., iron powder) with both large specific surface area and high current density were beneficial for phosphorus removal. Simultaneously, anode magnetization could also enhance the phosphorus removal to some extent based on the effect of magnetic field (MF) on water characteristics (e.g., conductivity). Combining the advantages of particle electrode and MF, magnetized particle anode was superior to other electrodes in phosphorus removal and cell voltage maintenance. Compared with the conventional plate anode, the magnetized iron particle anode was more economical and could reduce operating cost by more than 50%. The results are useful for the practical application of phosphorus removal by EC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.