Abstract
Acid mine drainage (AMD) affects thousands of stream miles in the Appalachian region of the USA and results in elevated concentrations of iron and aluminum in the stream water and sediments and wide ranging pH values. It was hypothesized that these conditions would lead to increased P buffering capacity of the sediments which in turn would cause a decrease in dissolved reactive phosphorus (DRP) in the water column. In the lab fresh Fe, Al, and Mn oxide precipitates all adsorbed DRP strongly but over different pH ranges. Sulfate and calcium ions inhibited adsorption of DRP with Fe oxides but the effect was less apparent with Al oxides. In the field DRP concentration was reduced 54–90% just downstream of an AMD input compared to upstream of the input. In addition the sediment buffering capacity increased and equilibrium phosphate concentration decreased dramatically downstream of the AMD inputs. The strength of the effect and the widespread occurrence of AMD suggest that AMD could be altering the P dynamics of streams and rivers throughout the Appalachian region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.