Abstract

Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains. Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P. Grain yield in the plants grown on the native soils was positively correlated with Olsen P but not with diethylenetriaminepentaacetic acid (DTPA)-extractable Zn except for wheat on P-rich soils. Grain Zn concentration was negatively correlated with Olsen P. Grain Zn uptake differed little among soils. Application of P to the soils increased grain yield insignificantly and P concentration significantly; however, it reduced grain Zn concentration (particularly at low Olsen P values). Applying Zn alone only increased grain Zn concentration, whereas applying P and Zn in combination increased yield and grain Zn concentration at low and high Olsen P values, respectively. Applying P alone to plants grown on calcareous Vertisols low in available P and Zn may in practice reduce grain Zn concentrations while not increasing grain yield significantly. © 2016 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.