Abstract

BackgroundForest soils are usually highly weathered and abundant in mineral-weathering bacteria, which have not been used to mobilize soil minerals for crop production. Here, we used an acidic forest soil with low available phosphorus (P), potassium (K), and silicon (Si) to isolate bacteria capable of co-solubilizing P, K, and Si (PKSi-solubilizing) and the model rice plant to test their potential to mobilize soil P, K, and Si for crop nutrition.ResultsSix PKSi-solubilizing strains representative of common mineral-weathering proteobacteria taxa (genera Burkholderia, Paraburkholderia, Collimonas, Pseudomonas, and Agrobacterium) were screened out. They showed diverse P-, K-, or Si-solubilizing activities and produced diverse organic acids. Their mineral-solubilizing activities were positively correlated with the levels of medium pH reduction and gluconic acid production. They promoted the growth of rice seedlings grown in the forest soil by increasing soil available P and Si, plant P, K, and Si cumulative contents and dry weight, and the corresponding root-to-shoot ratios. The growth of rice seedlings alone and with the inoculated PKSi-solubilizing stains in the acidic forest soil did not reduce the soil pH.ConclusionsThe forest soil with low available P, K, and Si is a valuable resource for high-performance PKSi-solubilizing bacteria improving soil fertility and crop nutrition. The PKSi-solubilizing bacteria screened out can promote rice seedling growth by mobilizing P, K, and Si from soil to plant in the acidic soil with low available P, K, and Si. They show potentials to mitigate soil P, K, and Si deficiency and promote crop growth, and to recover soluble P, K, and Si from chemical fertilizers and improve the use efficiency of chemical fertilizers, thus reducing the input of chemical fertilizers. They may retard soil acidification by Si-solubilization and improve soil quality.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.